Monday, April 12, 2021

Trusted CI webinar: Arizona State's Science DMZ, Mon April 26th @11am Eastern

Members of Arizona State University are presenting on their Science DMZ on Monday April 26th at 11am (Eastern).

Please register here. Be sure to check spam/junk folder for registration confirmation email.

Drawing upon its mission to enable access to discovery and scholarship, Arizona State University is deploying an advanced research network employing the Science DMZ architecture. While advancing knowledge of managing 21st-century cyberinfrastructure in a large public research university, this project also advances how network cyberinfrastructure supports research and education in science, engineering, and health.

Replacing existing edge network equipment and installing an optimized, tuned Data Transfer Node provides a friction-free wide area network path and streamlined research data movement. A strict router access control list and intrusion detection system provide security within the Science DMZ, and end-to-end network performance measurement via perfSONAR guards against issues such as packet loss.

Recognizing that the operation of the Science DMZ must not compromise the university’s network security profile, while at the same time avoiding the performance penalty associated with perimeter firewall devices, data access and transfer services will be protected by access control lists on the Science DMZ border router as well as host-level security measures. Additionally, the system architecture employs the anti-IP spoofing tool Spoofer, the Intrusion Detection System (IDS) Zeek, data-sharing honeypot tool STINGAR, traditional honeypot/darknet/tarpit tools, as well as other open-source software.

Finally, Science data flows are supported by a process incorporating user engagement, iterative technical improvements, training, documentation, and follow-up.

Speaker Bios:

Douglas Jennewein is Senior Director for Research Computing in the Research Technology Office at Arizona State University. He has supported computational and data-enabled science since 2003 when he built his first supercomputer from a collection of surplus-bound PCs. He currently architects, funds, and deploys research cyberinfrastructure including advanced networks, supercomputers, and big data archives. He has also served on the NSF XSEDE Campus Champions Leadership Team since 2016 and has chaired that group since 2020. Jennewein is a certified Software Carpentry instructor and has successfully directed cyberinfrastructure projects funded by the National Science Foundation, the National Institutes of Health, and the US Department of Agriculture totaling over $4M.

Chris Kurtz is the Senior Systems Architect for the Research Technology Office in the Office of Knowledge Enterprise at Arizona State University. Previously Chris was the Director of Public Cloud Engineering as well as the Splunk System Architect (and Evangelist) at ASU. He has been appointed as Splunk Trust Community MVP since its inception. Chris is a regular speaker on Splunk and Higher Education, including multiple presentations at Educause, Educause Security Professionals,  and Splunk’s yearly “.conf" Conference. Prior to architecting Splunk, he was the Systems Manager of the Mars Space Flight Facility at ASU, a NASA/JPL funded research group, where he supported numerous Mars Missions including TES, THEMIS, and the Spirit and Opportunity Rovers. Chris lives in Mesa, Arizona along with his wife, rescue dogs, and cat.

Join Trusted CI's announcements mailing list for information about upcoming events. To submit topics or requests to present, see our call for presentations. Archived presentations are available on our site under "Past Events."

 

Wednesday, April 7, 2021

Michigan State University Engages with Trusted CI to Raise Awareness of Cybersecurity Threats in the Research Community

Cybersecurity exploits are on the rise across university communities, costing valuable resources, and loss of productivity, research data, and personally identifiable information. In a DXC report, it was estimated that an average ransomware attack can take critical systems down for 16 days, and the overall worldwide cost of ransomware in 2020 was predicted to cost $170 billion.   Additional reputational impacts of cybersecurity attacks, although hard to measure, regularly weigh in the minds of scientists and researchers.

An event of this nature occurred at Michigan State University (MSU), which experienced a ransomware attack in May 2020. While many organizations attempt to keep the public from finding out about cyberattacks for fear of loss of reputation or follow-up attacks, MSU has decided to make elements of its attack public in the interests of transparency, to encourage disclosure of similar types of attacks, and perhaps more importantly, to educate the open-science community about the threat of ransomware and other destructive types of cyberattacks. The overarching goal is to raise awareness about rising cybersecurity threats to higher education in hopes of driving safe cyberinfrastructure practices across university communities. 

To achieve this, the CIO’s office at MSU has engaged with Trusted CI, the NSF Cybersecurity Center of Excellence, in a collaborative review and analysis of the ransomware attack suffered by MSU last year.  The culmination of the engagement will be a report focusing on lessons learned during the analysis; these ‘Lessons Learned’ would then be disseminated to the research community.  We expect the published report to be a clear guide for researchers and their colleagues who are security professionals to help identify, manage, and mitigate the risk of ransomware and other types of attacks.

Thursday, April 1, 2021

Trusted CI Engagement Application Deadline Extended

 

Trusted CI Engagement Application Deadline

 Extended till April 9, 2021

 

Apply for a one-in-one engagement with Trusted CI for early 2021

  

Trusted CI is accepting applications for one-on-one engagements to be executed in July-Dec 2021. Applications are due April 9, 2021

To learn more about the process and criteria, and to complete the application form, visit our site: 

http://trustedci.org/application


During Trusted CI’s first 5 years, we’ve conducted
 more than 24 one-on-one engagements with NSF-funded projects, Large Facilities, and major science service providers representing the full range of NSF science missions.  We support a variety of engagement types including: assistance in developing, improving, or evaluating an information security program; software assurance-focused efforts; identity management; technology or architectural evaluation; training for staff; and more.   

As the NSF Cybersecurity Center of Excellence, Trusted CI’s mission is to provide the NSF community a coherent understanding of cybersecurity’s role in producing trustworthy science and the information and know-how required to achieve and maintain effective cybersecurity programs.